Organic Agriculture and Crop protection

Christian Langlais et Jean Philippe Deguine
Where organic agriculture fits in

- Has increased in the last 10 years but < 1%.
- 31 million ha (2006). In Vietnam 6000 ha
- / 100 million GMP’s.
- 0.01 to 13.5% (Austria): fruit and vegetables.
- 0.01 to 2% (Bangladesh): plants for export.
- Problem: Lack of knowledge / skills.
The value of organic agriculture:

- On environmental impact.
- On energy consumption.
- On soil quality.
- On landscape quality.

- On products quality (zero chemical pesticides)
Figure 1 – Comparaison de l’impact environnemental de l’AB et de l’AC d’après différentes composantes environnementales

Figure 1 - Comparison of the impact of OA and of CA on environmental criteria

Performances de l’AB par rapport à l’AC

Avantageux Désavantageux
++ + 0 - --

Sol

Paysage

Erosion

Biodiversité

Eau de nappe et de surface

Air et climat

Performance de l’AB par rapport à l’AB :
++ : bien meilleure, + : meilleure, 0 : semblable, - : plus mauvaise, -- : bien plus mauvaise

représente l’évaluation finale associée à un intervalle de confiance subjectif

Source : Stolze et al., 2000 (d’après plus de 300 études en Europe) et Lotter, 2003, modifié
<table>
<thead>
<tr>
<th>Productions et pays d'étude</th>
<th>Énergie consommée GJ ha(^{-1})</th>
<th>Énergie consommée GJ t(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AC</td>
<td>AB</td>
</tr>
<tr>
<td>Blé d'hiver</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allemagne</td>
<td>18,3</td>
<td>10,8</td>
</tr>
<tr>
<td></td>
<td>17,2</td>
<td>6,1</td>
</tr>
<tr>
<td></td>
<td>16,5</td>
<td>8,2</td>
</tr>
<tr>
<td>Pommes de terre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allemagne</td>
<td>38,2</td>
<td>27,5</td>
</tr>
<tr>
<td></td>
<td>24,0</td>
<td>13,1</td>
</tr>
<tr>
<td></td>
<td>19,7</td>
<td>14,3</td>
</tr>
<tr>
<td>Citrons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italie</td>
<td>43,3</td>
<td>24,9</td>
</tr>
<tr>
<td>Olives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italie</td>
<td>23,8</td>
<td>10,4</td>
</tr>
<tr>
<td>Pommes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allemagne</td>
<td>37,35</td>
<td>33,8</td>
</tr>
<tr>
<td>Lait</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suède</td>
<td>22,2</td>
<td>17,2</td>
</tr>
<tr>
<td>Allemagne</td>
<td>19,1</td>
<td>5,9</td>
</tr>
</tbody>
</table>

Source : Stolze et al., 2000 ; Alföldi et al., 2002.
Lack of knowledge / skills and research.

- Underlying principle = AES management tactics putting priority on the prevention of infestations.
- This principle needs to be delineated in specifications.
- In keeping with the principles of agro-ecology.
- In keeping with the ecological principles of IPM (Kogan, 94), but organic tools are not very suitable (bio-insecticides).
Protection principle of OA

Approach (Zehnder et al, 2007).
Conceptual framework (Wyss et al, 2005).

Indirect preventive measures, 4 phases:

- **Phase 1**: Location; agricultural practices compatible with natural processes (rotations, soil management, plant resistance, etc.).
- **Phase 2**: Management of vegetation so as to promote beneficial insects, to the detriment of insect pests.
- **Phase 3**: Inundative or inoculative releases.
- **Phase 4**: Accepted insecticides (organic, mineral) and sexual confusion.
Protection principle of OA

Conceptual framework (Wyss et al, 2005):

Strategic pillars of Phases 1 and 2:

1) Crop escapement:
 • In time and space.
 • Based on bio-ecological knowledge of pest insects.
 • E.g.: Choice of site, rotations, management of time and work, prophylactic measures (residues, resting stages).

2) Poor acceptability of the crop for pest insects:
 • By modifying their behaviour (egg laying, reconnaissance, location of the plant).
 • E.g.: Companion crops, bait plants.
Protection principle of OA

Phase 1:

1) Location of site:

- Look at conditions on the farm.
- Environment: Agricultural, climatic, pedologic.
- Because later on: Will not take.
- Conventional and phytosanitary factors:
 - Regional distribution of insect pests (choice of site, choice of crops).
 - Landscape: In isolation or mixed / farms not practicing organic agriculture.
 - Locally: Structure of flower communities at edges of parcels.
Protection principle of OA

Phase 1:

2) Agricultural practices relating to the site’s location:

- Strategy based on agricultural practices regarding the crops, in a long-term perspective of the farm’s operation and limiting risks of infestation.
- Very old practices used in traditional agriculture, pre-dating the use of inputs.
- Examples:
 - Agricultural precedent and background of crop rotations.
 - Properly selected rotations.
Protection principle of OA

Phase 1:

3) Soil quality management:

- Essential with habitat management for sustainable functioning of AES’s and crop protection.
- Strategy: Healthy management of habitats, on and under soil surface.
- Rotations, soil covering, organic matter (animal, crop residues): Indirect methods of preventing infestations.
- Mulches: Reduce temperature, increase moisture (reduces insect populations).
Protection principle of OA

Phase 1:

4) Tillage:

- Light tilling (conservation), often associated with soil covering practices: For soil management, water management, as well as for management of bio-aggressors.
- Klaviko (2001): Number of species of soil organisms > in soil that is not subject to much tilling.
- Adoption of minimum tilling in Europe also includes management of bio-aggressors (Holland, 2004).
Protection principle of OA

Phase 1:

5) Resistance of host plant:

- Basis of IPM (Maxwell, 1985).
- Not prevalent in the context of conventional agriculture, since the basis is agro-chemistry, with too much disturbance created by insecticides.
- In OA: Given level of knowledge, use of varieties tolerant of diseases more that varieties resistant to insect pests.
- For insects: In addition to the difficulty of taking into account interactions with secondary pests and beneficial insects.
- There is a real demand for pest-resistant varieties in organic agriculture.
Protection principle of OA

Phase 2:

Approaches in ecological engineering:

- Implemented subsequent to Phase 1 recommendations.
- Where there are constraints relating to site location, soil quality, varieties, ... they are limited.
- Measures that can also be implemented in the process of converting to OA.
Protection principle of OA

Phase 2:

1) Conservation organic control:

- Major recommendation in agro-ecological approaches (Barbosa, 1998).
- Suitable for OA because there is no chemical insecticide treatments.
- Beneficial fauna present plays the role of regulator in the ecosystem.
Protection principle of OA

Phase 2:

2) Companion crops:

- Dilute the attention of insect pests (resource concentration hypothesis, Root, 1973).
- Host plants can be used within or around parcels.
Protection principle of OA

Phase 2:

3) Bait plants:

- Sometimes used in Conventional, but very relevant in OA.
- The bait plant is more attractive than the crop plant (food, egg-laying site).
- Scale goes beyond that of the parcel.
- Push-pull: Combines the effects of bait plants (insect pests, beneficial insects).
- Example in OA: *Nezara virudula*: Mustard around corn fields.
Protection principle of OA

Phase 2:

Responses and effects of biodiversity in OA:

- Increase in biodiversity: Consistent with OA approaches.
- Reduction in abundance of insect pests, increase in beneficial fauna.
- Abundance and richness > in OA (Bengtsson et al, 2005) confirmed for beneficial insects, general predators, seed-corn beetles (Zenhder et al, 2007).
- Impacts on yield and economics?
Protection principle of OA

Phase 2:

Limits of Phase 2 measures:

- Classic organic control: Promotes control from the top down and increases biodiversity (invertebrates, vertebrates, plants).
- Whereas bottom-up approaches of habitat management contribute to colonisation, ovi-position and food taking by pest insects.
- Lack of study in OA.
- Particularly well adapted for OA (not compatible with conventional agriculture).
Protection principle of OA

Phase 3:

1) Role of organic agents in AB:

- Inoculative or inundative organic control: Breeding and releasing; an adjunct to COC; costly (often > chemical control).
- IFOAM (International Federation of Organic Agriculture Movements): OK for predators and parasitoids, but not GMO.
- Release of predators and parasitoids:
 - Success in OA in greenhouses: Predator acarina (pest acarina), Hymenoptera parasites (whiteflies).
 - Success in OA in the field: parasitoids on vegetable caterpillars, on plant lice attacking grain plants, grapevine caterpillars.
 - Sometimes has the effect of population reduction after the release.
Protection principle of OA

Phase 3:

1) Role of organic agents in OA:

- Use of entomo-pathogens (*Bacillus thuringiensis*, virus).
- Introduction of agents previously designed for conventional agriculture.
- Despite releases and (sometimes) reduction of pest insect populations, thresholds remain above tolerable level.
- OA can tolerate this and use additional means.
- Classical organic control is not discussed in OA because it is under regional or national authorities.
Protection principle of OA

Phase 3:

Limits of Phase 3 strategies:

- Cost of inundative-inoculative OC.
- In the field: Agents native to the region.
- Greenhouse: Introduced species.
- Many have not moved beyond the experimental stage.
Protection principle of OA

Phase 4:

Regulations governing insecticides, pheromones, repellents:

- Phase 4: Use of organic or mineral based insecticides, sexual pheromones, repellents. Organic agriculture only uses these as a last resort (because they are curative).
- IFOAM: Benchmarks for the production and use of such products (condition 1: non-synthetic origin).
- Para-pheromones (=exception) since they do not come in contact with the crop.
Protection principle of OA

Phase 4:

Regulations on insecticides: Inconsistency:

- Standards vary from one organisation to another:
 - EU does not allow tobacco products, OK in the USA. Reason: Poisonous for man and side effects on beneficial insects.

- National restrictions:
 - Rotenone: OK in Europe, prohibited in Germany (toxic for fish).

- Differences between the EU / USA:
 - E.g.: Spinosad (insecticide made from bacteria fermentation). USA and Switzerland OK for purified toxin, EU OK only for products made from microbial production.
Protection principle of OA

Phase 4:

Regulations on repellents:

- Large variety:
 - Herbs from tea, plant extracts, products of fermentation, clay-based products.
- Trend: Use of industrial products in preference to ‘home-made’ products.
Protection principle of OA

Phase 4:

Limits of Phase 4:

- Instability and degradation.
- Only effective if other measures taken beforehand.
- Research necessary: Thresholds for OA.
- Very small market for private group investment in research.
- Not a cure-all (curative measures).
Protection principle of OA

Conclusion (1)

- Priority for preventive measures.
- Necessity of integrating measures of the different phases, including hands-on.
- Phase 1: Potential in OA.
- Phase 2: Conventional organic control, to be combined with inundative-inoculative OC.
- Prospects: In parallel with “attract and kill” for insect pests, “attract and reward” for beneficial insects.
 - E.g. in NZ: Attraction of beneficial insects with attractive baits and “rewards” with flower strips (Berndt et al, 2006).
Protection principle of OA

Conclusion (2)

- Habitat management = crucial in OA:
 - Number and proximity of sources to sustain beneficial insects.
 - Sufficient corridors between parcels.
 - Make the crops attractive for the beneficial insects.

- Effects of scale:
 - Increased impact in OA at farm level.
 - Even greater impact at parcel level.
 - Weaker effect at scale of landscape:
 - Not serious as non-conventional environment.
 - Less pressure on beneficial insects as no chemical pesticides.
 - Needs further research.

- Research:
 - Minimal / research focuses on conventional.
 - To be expanded.