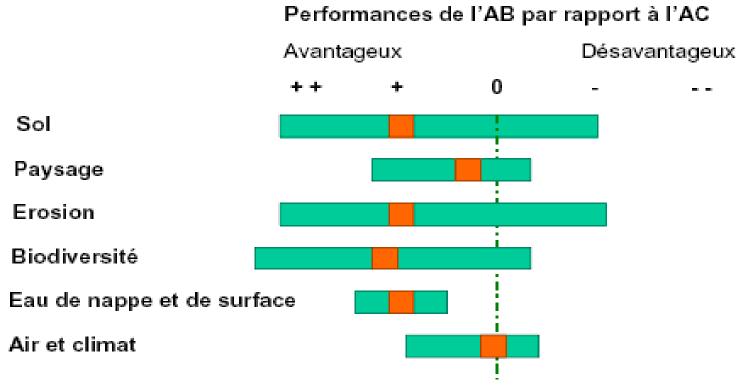


« Récentes évolutions autour de la qualité dans les filières agricoles et l'alimentation au Viet Nam : enjeux institutionnels et méthodes »

Organic Agriculture and Crop protection

Christian Langlais et Jean Philippe Deguine

Where organic agriculture fits in


- Has increased in the last 10 years but < 1%.
- 31 million ha (2006). In Vietnam 6000 ha
- / 100 million GMP's.
- 0.01 to 13.5% (Austria): fruit and vegetables.
- 0.01 to 2% (Bangladesh): plants for export.
- Problem: Lack of knowledge / skills.

The value of organic agriculture:

- On environmental impact.
- On energy consumption.
- On soil quality.
- On landscape quality.
- On products quality (zero chemical pesticides)

Figure 1 – Comparaison de l'impact environnemental de l'AB et de l'AC d'après différentes composantes environnementales

Figure 1 - Comparison of the impact of OA and of CA on environmental criteria

Performance de l'AB par rapport à l'AB :

++ : bien meilleure, + : meilleure, 0 : semblable, - : plus mauvaise, - - : bien plus mauvaise représente l'évaluation finale associée à un intervalle de confiance subjectif

Source : Stolze et al., 2000 (d'après plus de 300 études en Europe) et Lotter, 2003, modifié

Tableau 1 – Comparaison de la consommation d'énergie en AB et en AC Tableau 1 – Comparison of energy consumption in OA and in CA

Productions et pays d'étude	Énergie consommée GJ ha ^{.1}			Énergie consommée GJ t ⁻¹			
							AC
	Blé d'hiver						
	Allemagne	18,3	10,8	- 41	4,21	2,83	- 33
17,2		6,1	-65	2,70	1,52	- 43	
16,5		8,2	-51	2,38	1,89	- 21	
Pommes de terre							
Allemagne	38,2	27,5	- 28	0,07	0,08	+ 7	
	24,0	13,1	- 46	80,0	0,07	- 29	
	19,7	14,3	- 27	0,05	0,06	+ 29	
Citrons							
Italie	43,3	24,9	- 43	1,24	0,83	- 33	
Olives							
Italie	23,8	10,4	- 56	23,8	13,0	-45	
Pommes							
Allemagne	37,35	33,8	- 9,5	1,73	2,13	+ 23	
Lait							
Suède	22,2	17,2	- 23	2,85	2,41	-15	
Allemagne	19,1	5,9	- 69	2,65	1,21	-54	

Lack of knowledge / skills and research.

- Underlying principle = AES management tactics putting priority on the prevention of infestations.
- This principle needs to be delineated in specifications.
- In keeping with the principles of agro-ecology.
- In keeping with the ecological principles of IPM (Kogan, 94), but organic tools are not very suitable (bio-insecticides).

Approach (Zehnder et al, 2007). Conceptual framework (Wyss et al, 2005).

Indirect preventive measures, 4 phases:

- <u>Phase 1:</u> Location; agricultural practices compatible with natural processes (rotations, soil management, plant resistance, etc.).
- <u>Phase 2:</u> Management of vegetation so as to promote beneficial insects, to the detriment of insect pests.
- Phase 3: Inundative or inoculative releases.
- <u>Phase 4:</u> Accepted insecticides (organic, mineral) and sexual confusion.

Conceptual framework (Wyss et al, 2005):

Strategic pillars of Phases 1 and 2:

- 1) Crop escapement:
 - In time and space.
 - Based on bio-ecological knowledge of pest insects.
 - E.g.: Choice of site, rotations, management of time and work, prophylactic measures (residues, resting stages).
- 2) Poor acceptability of the crop for pest insects:
 - By modifying their behaviour (egg laying, reconnaissance, location of the plant).
 - E.g.: Companion crops, bait plants.

Phase 1:

1) Location of site:

- Look at conditions on the farm.
- Environment: Agricultural, climatic, pedologic.
- Because later on: Will not take.
- Conventional and phytosanitary factors:
 - Regional distribution of insect pests (choice of site, choice of crops).
 - Landscape: In isolation or mixed / farms not practicing organic agriculture.
 - Locally: Structure of flower communities at edges of parcels.

Phase 1:

- 2) Agricultural practices relating to the site's location:
 - Strategy based on agricultural practices regarding the crops, in a long-term perspective of the farm's operation and limiting risks of infestation.
 - Very old practices used in traditional agriculture, predating the use of inputs.
 - Examples:
 - Agricultural precedent and background of crop rotations.
 - Properly selected rotations.

Phase 1:

3) Soil quality management:

- Essential with habitat management for sustainable functioning of AES's and crop protection.
- Strategy: Healthy management of habitats, on and under soil surface.
- Rotations, soil covering, organic matter (animal, crop residues): Indirect methods of preventing infestations.
- Mulches: Reduce temperature, increase moisture (reduces insect populations).

Phase 1:

4) Tillage:

- Light tilling (conservation), often associated with soil covering practices: For soil management, water management, as well as for management of bioaggressors.
- Klaviko (2001): Number of species of soil organisms > in soil that is not subject to much tilling.
- Adoption of minimum tilling in Europe also includes management of bio-aggressors (Holland, 2004).

Phase 1:

5) Resistance of host plant:

- Basis of IPM (Maxwell, 1985).
- Not prevalent in the context of conventional agriculture, since the basis is agro-chemistry, with too much disturbance created by insecticides.
- In OA: Given level of knowledge, use of varieties tolerant of diseases more that varieties resistant to insect pests.
- For insects: In addition to the difficulty of taking into account interactions with secondary pests and beneficial insects.
- There is a real demand for pest-resistant varieties in organic agriculture.

Phase 2:

<u>Approaches in ecological engineering</u>:

- Implemented subsequent to Phase 1 recommendations.
- Where there are constraints relating to site location, soil quality, varieties, ... they are limited.
- Measures that can also be implemented in the process of converting to OA.

Phase 2:

1) Conservation organic control:

- Major recommendation in agro-ecological approaches (Barbosa, 1998).
- Suitable for OA because there is no chemical insecticide treatments.
- Beneficial fauna present plays the role of regulator in the ecosystem.
- Plant biodiversity: Promotes the action of natural enemies: shelter, shade, food source, alternately host and prey (enemies hypothesis, Root, 1973).
- Examples: "Beetle banks", flower strips, mixtures of grasses and flowers.

Phase 2:

2) Companion crops:

- Dilute the attention of insect pests (resource concentration hypothesis, Root, 1973).
- Host plants can be used within or around parcels.

Phase 2:

3) Bait plants:

- Sometimes used in Conventional, but very relevant in OA.
- The bait plant is more attractive than the crop plant (food, egg-laying site).
- Scale goes beyond that of the parcel.
- Push-pull: Combines the effects of bait plants (insect pests, beneficial insects).
- Example in OA: Nezara virudula: Mustard around corn fields.

Phase 2:

Responses and effects of biodiversity in OA:

- Increase in biodiversity: Consistent with OA approaches.
- Reduction in abundance of insect pests, increase in beneficial fauna.
- Examples in OA: Tomato (Drinkwater et al, 1993), rice (Hesler et al, 1993), apple (Wyss et al, 1995).
- Abundance and richness > in OA (Bengtsson et al, 2005)
 confirmed for beneficial insects, general predators, seed-corn
 beetles (Zenhder et al, 2007).
- Impacts on yield and economics?

Phase 2:

Limits of Phase 2 measures:

- Classic organic control: Promotes control from the top down and increases biodiversity (invertebrates, vertebrates, plants).
- Whereas bottom-up approaches of habitat management contribute to colonisation, ovi-position and food taking by pest insects.
- Lack of study in OA.
- Particularly well adapted for OA (not compatible with conventional agriculture).

Phase 3:

1) Role of organic agents in AB:

- Inoculative or inundative organic control: Breeding and releasing; an adjunct to COC; costly (often > chemical control).
- IFOAM (International Federation of Organic Agriculture Movements): OK for predators and parasitoids, but not GMO.
- Release of predators and parasitoids:
 - Success in OA in greenhouses: Predator acarina (pest acarina), Hymenoptera parasites (whiteflies).
 - Success in OA in the field: parasitoids on vegetable caterpillars, on plant lice attacking grain plants, grapevine caterpillars.
 - Sometimes has the effect of population reduction after the release.

Phase 3:

1) Role of organic agents in OA:

- Use of entomo-pathogens (Bacillus thuringiensis, virus).
- Introduction of agents previously designed for conventional agriculture.
- Despite releases and (sometimes) reduction of pest insect populations, thresholds remain above tolerable level.
- OA can tolerate this and use additional means.
- Classical organic control is not discussed in OA because it is under regional or national authorities.

Phase 3:

<u>Limits of Phase 3 strategies</u>:

- Cost of inundative-inoculative OC.
- In the field: Agents native to the region.
- Greenhouse: Introduced species.
- Many have not moved beyond the experimental stage.

Phase 4:

Reglulations governing insecticides, pheromones, repellents:

- Phase 4: Use of organic or mineral based insecticides, sexual pheromones, repellents. Organic agriculture only uses these as a last resort (because they are curative).
- IFOAM: Benchmarks for the production and use of such products (condition 1: non-synthetic origin).
- Para-pheromones (=exception) since they do not come in contact with the crop.

Phase 4:

Reglulations on insecticides: Inconsistency:

- Standards vary from one organisation to another:
 - EU does not allow tobacco products, OK in the USA. Reason:
 Poisonous for man and side effects on beneficial insects.
- National restrictions:
 - Rotenone: OK in Europe, prohibited in Germany (toxic for fish).
- Differences between the EU / USA:
 - E.g.: Spinosad (insecticide made from bacteria fermentation). USA and Switzerland OK for purified toxin, EU OK only for products made from microbial production.

Phase 4:

Regulations on repellents:

- Large variety:
 - Herbs from tea, plant extracts, products of fermentation, clay-based products.
- Trend: Use of industrial products in preference to 'home-made' products.

Phase 4:

Limits of Phase 4:

- Instability and degradation.
- Only effective if other measures taken beforehand.
- Research necessary: Thresholds for OA.
- Very small market for private group investment in research.
- Not a cure-all (curative measures).

Conclusion (1)

- Priority for preventive measures.
- Necessity of integrating measures of the different phases, including hands-on.
- Phase 1: Potential in OA.
- Phase 2: Conventional organic control, to be combined with inundative-inoculative OC.
- Prospects: In parallel with "attract and kill" for insect pests, "attract and reward" for beneficial insects.
 - E.g. in NZ: Attraction of beneficial insects with attractive baits and "rewards" with flower strips (Berndt et al, 2006).

Conclusion (2)

- Habitat management = crucial in OA:
 - Number and proximity of sources to sustain beneficial insects.
 - Sufficient corridors between parcels.
 - Make the crops attractive for the beneficial insects.
- Effects of scale:
 - Increased impact in OA at farm level.
 - Even greater impact at parcel level.
 - Weaker effect at scale of landscape:
 - Not serious as non-conventional environment.
 - Less pressure on beneficial insects as no chemical pesticides.
 - Needs further research.
- Research:
 - Minimal / research focuses on conventional.
 - To be expanded.